# On the Arsenides and Antimonides of Tantalum

SIGRID FURUSETH, KARI SELTE and ARNE KJEKSHUS

Kjemisk Institutt A, Universitetet i Oslo, Blindern, Oslo 3, Norway

The phase relationships in the systems tantalum-arsenic and tantalum-antimony have been studied by X-ray method. Density determinations and magnetic susceptibility measurements have been carried out. Five intermediate phases have been identified:

- 1. TaAs, with NbAs-type structure, a=3.4348 Å, c=11.641 Å, density = 12.25 g cm<sup>-3</sup>.

  2. TaAs<sub>2</sub>, with NbAs<sub>2</sub>-type structure, a=9.3385 Å, b=3.3851 Å, c=7.7568 Å,  $\beta=119.70^\circ$ , density = 10.26 g cm<sup>-3</sup>.
- 3. Ta<sub>3</sub>Sb, with  $\beta$ W-type structure, a=5.2646 Å,
  4. Ta<sub>5</sub>Sb<sub>4</sub>, with Ti<sub>5</sub>Te<sub>4</sub>-type structure, a=10.248 Å, c=3.5460 Å, density = 12.22 g cm<sup>-3</sup>.
  5. Ta<sub>5</sub>D<sub>2</sub>, with NbAs<sub>2</sub>-type structure, a=10.2218 Å,
- $b = 3.6447 \text{ Å}, c = 8.2915 \text{ Å}, \beta = 120.39^{\circ}, \text{density} = 10.53 \text{ g cm}^{-3}.$

The TaAs, TaAs, and TaSb, phases have diamagnetic susceptibilities, whereas the Ta, Sb, phase shows weak temperature independent paramagnetism.

In the course of continued studies on transition metal chalcogenides and pnictides at this Institute an investigation of structural and magnetic properties of tantalum arsenides and antimonides has been carried out. A study of these systems has been prompted by interesting structural findings in the corresponding niobium-arsenic and niobium-antimony systems. 1-4

The present communication forms a supplement to recent publications on the tantalum arsenides by Boller and Parthé 5 and Saini et al.6, where phases with composition TaAs and TaAs<sub>2</sub> have been described. The older literature <sup>7</sup> claims the existence of a phase with composition TaAs<sub>1.4</sub>. Ta<sub>3</sub>Sb is the only phase previously reported § in the tantalum-antimony system.

#### EXPERIMENTAL

Materials. The tantalum metal used in this study was "Spectrographically standardized tantalum" from Johnson, Matthey & Co., Ltd.; with reported impurities (in ppm): Nb (<200), Fe (300), Si (100), Al (20), Cr (20), Sn (20), Mn (5), and Mg (1). The "Spectrographically standard property of the graphically standardized" arsenic and antimony from Johnson, Matthey & Co., Ltd. contained (in ppm): Na (3), Si (2), Cu (<1), Mg (<1), and Ag (<1) for the arsenic and Cu (<1), Mg (<1), Si (<1), and Ag (<1) for the antimony.

Preparation. Samples were prepared by heating accurately weighed quantities of tantalum and arsenic or antimony, respectively, in evacuated and sealed silica tubes. Samples with composition 33.33, 50.00, 66.67, and 75.00 atomic % As and samples with 20.00, 25.00, 33.33, 44.44, 50.00, 60.00, 66.67, and 75.00 atomic % Sb were heated at 850°C for 10 days and quenched in ice water.

Samples of TaAs, Ta<sub>3</sub>Sb, and Ta<sub>5</sub>Sb<sub>4</sub> were also prepared by thermal decomposi-

tion of TaAs2 and TaSb2, respectively.

X-Ray diffraction. All samples were crushed and X-ray photographs were taken in a Guinier focusing camera of 80 mm diameter using strictly monochromatized CuKα<sub>1</sub>radiation. For the calculation of lattice constants potassium chloride (Analar, The British Drug Houses Ltd., a=6.2919 Å  $^{9}$ ) was added to the specimen as an internal standard. Lattice constants are expressed in Angström units on the basis of  $\lambda(CuK\alpha_1)$ 

Density measurements. The density measurements were carried out pycnometrically at 25°C with kerosene as displacement liquid. To remove gases adsorbed by the sample the pycnometer was filled under vacuum with kerosene. The samples weighed approxi-

Magnetic measurements. The magnetic susceptibilities were measured by the Gouy method at three different maximum field strengths ( $H_{\text{max}} = 4015, 4700, \text{ and } 5110 \text{ Ø}$ ). The samples were enclosed in evacuated and sealed Pyrex tubes of 3 mm internal diameter to a height of about 85 mm.

### RESULTS

In the tantalum-arsenic system only the two intermediate phases TaAs and TaAs<sub>2</sub>, previously described, <sup>5,6</sup> were found. In the tantalum-antimony system the existence of two new, intermediate phases was ascertained, i.e. the Ta<sub>5</sub>Sb<sub>4</sub> phase and the TaSb<sub>2</sub> phase. Furthermore, the existence of the Ta<sub>2</sub>Sb phase (known from the earlier study of Nevitt 8) was confirmed.

These phases are all completely analogous to the phases in the niobiumarsenic and niobium-antimony systems, as described by Furuseth and

Kjekshus.1-4

The  $Ta_3Sb$  phase. Guinier photographs of the samples with < 44.44 atomic % Sb showed the presence of a phase with cubic symmetry. The indexed

reflections are no doubt due to the Ta<sub>3</sub>Sb phase, described by Nevitt.<sup>8</sup>

The purest samples of the Ta<sub>3</sub>Sb phase were obtained by thermal decomposition of the TaSb<sub>2</sub> phase at 1150°C. After degradation the residuum was found to contain Ta<sub>3</sub>Sb as the only phase from the tantalum-antimony system. However, a parallel, interfering reaction with silica gave the samples an unavoidable contamination. (A similar observation is made in a study of tantalum chalogenides with high tantalum content.<sup>10</sup>)

The lattice constant of the Ta<sub>3</sub>Sb phase (the purest sample judging from the Guinier photograph (Table 1)) is a = 5.2646 Å in close agreement with the value  $a = 5.2595 \pm 0.0010$  Å reported by Nevitt.<sup>8</sup> According to the approximately constant a-axis for samples of different composition, the

homogeneity range of the Ta<sub>3</sub>Sb phase is not noticeable.

The observed density is approximately 10 % lower than the calculated density, 15.12 g cm<sup>-3</sup>, from the X-ray measurements assuming 2 Ta<sub>3</sub>Sb-groups per unit cell. This discrepancy is readily explained by the contamination of the sample and gives no reason to reject the stoichiometric formula Ta<sub>3</sub>Sb.

According to Nevitt 8 Ta<sub>3</sub>Sb should be listed among substances having  $\beta$ W-type structure. A comparison of observed and calculated intensities of the

| $I_{ m obs}$   | $\sin^2\Theta 	imes 10^5$ |        | 7.77 | 7            | $\sin^2\!\Theta  	imes  10^5$ |        | 7.77       |
|----------------|---------------------------|--------|------|--------------|-------------------------------|--------|------------|
|                | obs                       | calc   | hkl  | $I_{ m obs}$ | obs                           | calc   | hkl        |
| vw             | 4 286                     | 4 281  | 110  | st           | 27 839                        | 27 828 | 320        |
| m              | 8 563                     | 8 562  | 200  | m            | 34 255                        | 34 250 | 400        |
| $\mathbf{vst}$ | 10 699                    | 10 703 | 210  | m            | 42 821                        | 42 812 | 420        |
| ${f st}$       | 12 843                    | 12 844 | 211  | st           | 44 969                        | 44 953 | 421        |
| m              | 25 679                    | 25 687 | 222  | st           | 47 144                        | 47 093 | <b>332</b> |

Table 1. Guinier photograph data of  $Ta_3Sb$  taken with strictly monochromatized  $CuK\alpha_1$ radiation.

reflections on the Guinier photographs confirmed the proposed structure. The shortest interatomic distances in Ta<sub>3</sub>Sb are (in Å):

Ta - 10 Ta: 2.632 (2); 3.224(8)

- 4 Sb: 2.943 Sb - 12 Ta: 2.943 - 8 Sb: 4.559

The shortest Ta—Ta distance is some 8 % shorter than in metallic tantalum (2.863 Å  $^{11}$ ). Similar short metal-metal distances observed in all phases with  $\beta$ W-type structure, are one of the most interesting features of this class of phases (see the discussion by Geller  $^{12}$  and Pauling; $^{13}$  see also Nevitt  $^{8}$ ).

The Ta<sub>5</sub>Sb<sub>4</sub> phase. The disappearing phase method applied to the Guinier photographs indicated the existence of a phase with composition 44.44

Table 2. Guinier photograph data of  $Ta_5Sb_4$  taken with strictly monochromatized  $CuKa_1$ radiation.

| $I_{ m obs}$                                           | $\sin^2\!\Theta 	imes 10^5$ |                  | 7.77           | 7            | $\sin^2\Theta 	imes 10^5$ |                                                  | 7.77              |
|--------------------------------------------------------|-----------------------------|------------------|----------------|--------------|---------------------------|--------------------------------------------------|-------------------|
|                                                        | obs                         | cale             | hkl            | $I_{ m obs}$ | obs                       | calc                                             | hkl               |
| st                                                     | 1 131                       | 1 130            | 110            | w            | 20 315                    | 20 335                                           | 006               |
| w<br>w                                                 | 2 259<br>4 524              | 2 259<br>4 519   | 200<br>220     | w            | 21 100                    | ${21\ 099\ 21\ 132}$                             | $\frac{521}{202}$ |
| vw                                                     | 5 643                       | 5 649            | 310            | m            | 22 585                    | 22 595                                           | 620               |
| $\mathbf{st}$                                          | 7 542                       | 7 542            | 211            | vw           | 23 397                    | 23 392                                           | 222               |
| $\mathbf{vst}$                                         | 9 789                       | 9 802            | 301            | w            | 25 637                    | 25 618                                           | 611               |
| st<br>st                                               | 10 168<br>11 302            | 10 168<br>11 297 | 330<br>420     | st           | 27 929                    | $\begin{cases} 27 \ 878 \\ 27 \ 911 \end{cases}$ | 541<br>402        |
| $egin{array}{c} \mathbf{m} \ \mathbf{vst} \end{array}$ | 12 056<br>14 313            | 12 061<br>14 321 | 321<br>411     | m            | 28 238                    | 28 244                                           | <b>{710 550</b>   |
| m                                                      | 14 685                      | 14 687           | 510            | m            | 29 055                    | 29 041                                           | 332               |
| vw                                                     | 18 065                      | 18 076           | 440            | st           | 30 183                    | 30 170                                           | 422               |
| m                                                      | 18 867                      | 18 840           | <b>431</b> 501 | f w          | 33 573<br>34 670          | 33 560<br>34 656                                 | 512<br>721        |
| w                                                      | 19 193                      | 18 873<br>19 206 | 002<br>530     | vw<br>vw     | 36 134<br>36 979          | 36 152<br>36 949                                 | 800<br>442        |
| vw                                                     | 20 010                      | 20 003           | 112            |              |                           |                                                  |                   |

Acta Chem. Scand. 19 (1965) No. 1

Table 3. Interatomic distances in Ta<sub>5</sub>Sb<sub>4</sub> (Å).

atomic % Sb. Thermal decomposition of the  $TaSb_2$  phase at 1000°C confirmed this composition and the phase was accordingly designated  $Ta_5Sb_4$ . Density measurements and structure determination proved the composition.

The Guinier photographs (Table 2) were indexed on tetragonal axes:

$$a = 10.248 \text{ Å}, c = 3.5460 \text{ Å}, c/a = 0.3460$$

The lattice constants of the stoichiometric Ta<sub>5</sub>Sb<sub>4</sub> sample vary only slightly from the lattice constants of Ta<sub>5</sub>Sb<sub>4</sub> in samples where the Ta<sub>5</sub>Sb<sub>4</sub> phase is in equilibrium with the Ta<sub>3</sub>Sb and TaSb<sub>2</sub> phases. This indicates that the homogeneity range of the Ta<sub>5</sub>Sb<sub>4</sub> phase is rather narrow.

According to the pycnometric density 12.25 g cm<sup>-3</sup> the unit cell contains 2 ( $Z_c = 1.97$ ) Ta<sub>5</sub>Sb<sub>4</sub>-groups. The calculated density from the X-ray data is 12.41 g cm<sup>-3</sup>.

The tetragonal structure of a phase Ti<sub>5</sub>Te<sub>4</sub> has been described by Grønvold et al.<sup>14</sup> As it has been shown <sup>1,2</sup> that the compounds Nb<sub>5</sub>Sb<sub>4</sub> and Ti<sub>5</sub>Te<sub>4</sub> are isostructural, and as the Guinier photograph of Ta<sub>5</sub>Sb<sub>4</sub> resembles that of Nb<sub>5</sub>Sb<sub>4</sub> both with regard to line pattern and intensities, the possibility of Ta<sub>5</sub>Sb<sub>4</sub> also being isostructural with Ti<sub>5</sub>Te<sub>4</sub> was investigated.

In terms of the space group I4/m the atomic arrangement in  $\mathrm{Ti}_5\mathrm{Te}_4$  is as follows (the parameters have been rounded off):

```
2 Ti<sub>1</sub> in (a) 0,0,0; \frac{1}{2},\frac{1}{2},\frac{1}{2}
8 Ti<sub>11</sub> in (h) \pm (x,y,0; \frac{1}{2}+x,\frac{1}{2}+y,\frac{1}{2}; \bar{y},x,0; \frac{1}{2}-y,\frac{1}{2}+x,\frac{1}{2})
with x_1 = 0.31 and y_1 = 0.38
8 Te in (h) with x_2 = 0.06 and y_2 = 0.28
```

Table 4. Guinier photograph data of TaAs taken with strictly monochromatized  $CuK\alpha_1$ radiation.

| 7                | $\sin^2\!\Theta 	imes 10^5$ |        | hkl         | 7            | $\sin^2\Theta 	imes 10^5$ |        | hkl |
|------------------|-----------------------------|--------|-------------|--------------|---------------------------|--------|-----|
| I <sub>obs</sub> | obs                         | calc   | <i>IIII</i> | $I_{ m obs}$ | obs                       | calc   | nki |
| m                | 5 462                       | 5 466  | 101         | w            | 25 582                    | 25 580 | 211 |
| m                | 6 995                       | 7 004  | 004         | w            | 25 819                    | 25 817 | 116 |
| $\mathbf{m}$     | 8 965                       | 8 969  | 103         | w            | 26 487                    | 26 480 | 107 |
| $\mathbf{vst}$   | 11 806                      | 11 808 | 112         | m            | 27 118                    | 27 118 | 204 |
| $\mathbf{w}$     | 15 968                      | 15 973 | 105         | vw           | 28 027                    | 28 018 | 008 |
| m                | 20 107                      | 20 114 | 200         | w            | 29 083                    | 29 083 | 213 |

| a (Å)             | a (Å) c (Å)        |        | Reference           |
|-------------------|--------------------|--------|---------------------|
| 3.4348            | 11.641             | 3.3891 | Present             |
| 3.43,             | 11.65              | 3.391  | Boller and Parthé 5 |
| $3.436 \pm 0.002$ | $11.644 \pm 0.005$ | 3.389  | Saini et al. 6      |

Table 5. Lattice constants of TaAs.

These parameters were used in the calculation of intensities of the Guinier photographs. A reasonable agreement between observed and calculated intensities was obtained, indicating that the proposed structure is correct. Further refinement of the parameters was not attempted.

The shortest interatomic distances, based on the above parameters, are listed in Table 3. A discussion of this structure type is given by Grønvold et al. 14

Seven phases are known with the  $Ti_5Te_4$ -type structure, *i.e.*  $Ti_5Te_4$ , <sup>14</sup>  $V_5S_4$ , <sup>15</sup>  $V_5Se_4$ , <sup>16</sup>  $Nb_5Se_4$ , <sup>17</sup>  $Nb_5Te_4$ , <sup>17</sup>  $Nb_5Sb_4$ , <sup>1,2</sup> and  $Ta_5Sb_4$  while  $V_5Te_4$  <sup>18</sup> has a monoclinic structure of similar dimensions. The existence of  $Nb_5Sb_4$  and  $Ta_5Sb_4$  emphasizes the metallic character of these phases as already pointed out by Furuseth and Kjekshus.<sup>2</sup>

The TaAs phase. The purest samples of the TaAs phase were made by thermal decomposition of the TaAs<sub>2</sub> phase. Complete degradation of TaAs<sub>2</sub> at 900°C gave TaAs as residual crystalline phase.

Guinier photographs (Table 4) of the TaAs phase were indexed on the basis of a tetragonal unit cell. The lattice dimensions of TaAs being essentially constant for samples with lower and higher arsenic content than stoichiometric TaAs, show that the homogeneity range must be rather narrow.

For comparison with the values previously determined by Boller and Parthé<sup>5</sup> and Saini *et al.*<sup>6</sup> the lattice constants have been listed in Table 5. The three sets of values are in good agreement.

The pycnometric density of TaAs prepared by thermal decomposition of TaAs<sub>2</sub>, 12.25 g cm<sup>-3</sup>, is in close accordance with the calculated density, 12.37 g cm<sup>-3</sup>, from the X-ray data (assuming 4 ( $Z_c = 3.96$ ) TaAs-groups per unit cell).

The crystal structure of TaAs has been determined by Boller and Parthé.<sup>5</sup> (A tentative confirmation is also given by Saini *et al.*<sup>6</sup>) TaAs is isostructural with NbAs, a structure independently determined by Boller and Parthé <sup>5</sup> and Furuseth and Kjekshus.<sup>3</sup> In terms of space group  $I4_1md$  4 Ta and 4 As are in (a):

$$\begin{array}{c} 0.0.z;\ 0.\frac{1}{2}.\frac{1}{4}+z;\ \frac{1}{2}.0.\frac{3}{4}+z;\ \frac{1}{2}.\frac{1}{2}.\frac{1}{2}+z\\ \text{with } z_{\text{Ta}}=0 \text{ and } z_{\text{As}}\approx 5/12 \end{array}$$

This structure was also verified in the present study by comparing observed and calculated intensities of the Guinier photographs, though minor deviations from  $z_{As} = 5/12$  were not tested.

Table 6. Guinier photograph data of TaAs, taken with strictly monochromatized  ${\rm Cu}K\alpha_1$ -radiation.

| т                      | $\sin^2\Theta$   | × 10 <sup>5</sup> | hkl                                                           | 7            | sin²Θ            | × 10 <sup>5</sup> | hkl                                                  |
|------------------------|------------------|-------------------|---------------------------------------------------------------|--------------|------------------|-------------------|------------------------------------------------------|
| $I_{ m obs}$           | obs              | calc              | nki                                                           | $I_{ m obs}$ | obs              | calc              | 1060                                                 |
| m                      | 1 300            | 1 307             | 001                                                           | w            | 27 702           | 27 717            | 510                                                  |
| $\mathbf{st}$          | 2 758            | 2 762             | $20\overline{1}$                                              | w            | 27 768           | 27 774            | 221                                                  |
| $\mathbf{w}$           | 3 598            | 3 606             | 200                                                           | w            | 28 238           | 28 255            | 402                                                  |
| m                      | 4 525            | 4 532             | $20\overline{2}$                                              | w            | 29 619           | 29 624            | $22\overline{3}$                                     |
| $\mathbf{v}\mathbf{w}$ | 5 220            | 5 227             | 002                                                           | m            | 29 811           | 29 828            | $31\overline{5}$                                     |
| $\mathbf{m}$           | 6 072            | 6 079             | $11\underline{0}$                                             | m            | 31 282           | 31 282            | 114                                                  |
| $\mathbf{m}$           | 6 305            | 6 310             | 111                                                           | w            | 31 764           | 31 758            | $42\overline{2}$                                     |
| $\mathbf{w}$           | 7 054            | 7 064             | 201                                                           | w            | 32 147           | 32 140            | $42\overline{1}$                                     |
| $\mathbf{vst}$         | 8 458            | 8 461             | 111                                                           | m            | 32 473           | <b>[32 457</b> ]  | 600                                                  |
| $\mathbf{m}$           | 8 905            | 8 914             | $20\overline{3}$                                              | 1            |                  | (32 470           | 023                                                  |
| $\mathbf{st}$          | 9 143            | 9 155             | $11\overline{2}$                                              | w            | 32 854           | 32 862            | $60\overline{5}$                                     |
| $\mathbf{w}$           | 11 041           | 11 049            | $40\overline{2}$                                              | vw           | 33 108           | 33 117            | 204                                                  |
| $\mathbf{w}$           | 11 369           | 11 372            | $31\overline{1}$                                              | vw           | 33 380           | 33 370            | $11\overline{5}$                                     |
| $\mathbf{m}$           | 11 422           | 11 430            | $40\overline{1}$                                              | vw           | 33 487           | 33 499            | $51\overline{5}$                                     |
| $\mathbf{st}$          | 11 751           | 11 761            | $00\bar{3}$                                                   | m            | 33 986           | 33 990            | $42\overline{3}$                                     |
| $\mathbf{st}$          | 12 059           | 12 066            | $31\overline{2}$                                              | m            | 34 396           | 34 401            | 511                                                  |
| $\mathbf{vst}$         | 13 272           | {13 281           | $40\overline{3}$                                              | w            | 34 740           | 34 731            | 313                                                  |
|                        |                  | 13 292            | 310                                                           | m            | 35 148           | 35 135            | 420                                                  |
| $\mathbf{st}$          | 13 444           | 13 457            | 112                                                           | vw           | 35 653           | 35 657            | 406                                                  |
| m                      | 14 420           | 14 425            | 400                                                           | w            | 36 638           | 36 620            | 224                                                  |
| m                      | 14 605           | 14 613            | $11\bar{3}$                                                   | w            | 37 747           | 37 743            | $20\overline{6}$                                     |
| $\mathbf{st}$          | 15 361           | 15 373            | $31\overline{3}$                                              | st           | 38 536           | 38 531            | $71\bar{3}$                                          |
| m                      | 15 897<br>17 811 | 15 911            | $20\overline{4}$                                              | vw           | 38 850<br>39 097 | 38 836<br>39 091  | $\begin{array}{c} 42\overline{4} \\ 403 \end{array}$ |
| vw                     | 18 125           | 17 825<br>18 126  | $\begin{array}{c} 311 \\ \mathbf{40\overline{4}} \end{array}$ | vw           | 39 097           | (40 150           | $\frac{403}{714}$                                    |
| vw                     | 20 028           | 20 034            | 404                                                           | vw           | 40 156           | 40 216            | 601                                                  |
| w                      | 20 696           | 20 710            | 020                                                           |              | i                | 40 743            | 421                                                  |
| st                     | 21 043           | 21 066            | 113                                                           | w            | 40 764           | 40 784            | $60\overline{6}$                                     |
| vw<br>w                | 21 282           | 21 294            | $\frac{115}{314}$                                             | w            | 40 996           | 40 976            | $31\overline{6}$                                     |
| m<br>m                 | 21 802           | 21 819            | 203                                                           |              |                  | 142 496           | 516                                                  |
| vw                     | 22 004           | 22 017            | $\begin{array}{c} 203 \\ 021 \end{array}$                     | st           | 42 532           | 42 529            | $\begin{array}{c} 310 \\ 223 \end{array}$            |
| m                      | 22 171           | 22 189            | $51\overline{2}$                                              | vw           | 43 136           | 43 133            | $71\overline{1}$                                     |
| vw                     | 22 666           | 22 685            | 114                                                           |              |                  | (43 651           | 803                                                  |
| w                      | 23 334           | 23 346            | $51\frac{1}{3}$                                               | vw           | 43 690           | 43 698            | 512                                                  |
| w                      | 23 471           | 23 472            | $22\overline{1}$                                              |              | 443.0            | (44 124           | 115                                                  |
| vw                     | 23 634           | 23 646            | $51\overline{1}$                                              | m            | 44 149           | 44 195            | 804                                                  |
| vw                     | 24 312           | 24 316            | 220                                                           | vw           | 44 401           | 44 383            | $71\overline{5}$                                     |
| vw                     | 24 766           | 24 778            | $60\overline{2}$                                              |              | 1                | (45 488           | $62\overline{2}$                                     |
| vw                     | 24 962           | 24 971            | 312                                                           | w            | 45 503           | 45 569            | $62\overline{3}$                                     |
| w                      | 25 238           | 25 241            | $22\overline{2}$                                              | w            | 45 742           | 45 721            | $80\overline{2}$                                     |
| w                      | 25 497           | 25 520            | $20\overline{5}$                                              |              |                  | (46 230           | $22\overline{5}$                                     |
| vw                     | 25 935           | 25 937            | 022                                                           | w            | 46 273           | 46 295            | $42\overline{5}$                                     |
| vw                     | 27 114           | 27 116            | 514                                                           | m            | 46 717           | 46 669            | $1\overline{16}$                                     |
| vw                     | 27 285           | 27 311            | $60\overline{1}$                                              | vw           | 47 131           | 47 104            | 314                                                  |
| w                      | 27 538           | 27 554            | $60\overline{4}$                                              | vw           | 47 374           | 47 352            | 805                                                  |

As pointed out by Furuseth and Kjekshus<sup>3</sup> there are slight mistakes in the interatomic distances listed by Boller and Parthé.<sup>5</sup> With the present lattice dimensions the shortest interatomic distances are (in Å):

Table 7. Guinier photograph data of TaSb<sub>2</sub> taken with strictly monochromatized  $\text{Cu}K\alpha_1$ -radiation.

|                        | $\sin^2\!\Theta$ | × 10 <sup>5</sup> | 7 7 7                     | _            | sin²Θ  | × 10 <sup>5</sup> | 7.7              |
|------------------------|------------------|-------------------|---------------------------|--------------|--------|-------------------|------------------|
| $I_{ m obs}$           | obs              | calc              | hkl                       | $I_{ m obs}$ | obs    | calc              | hkl              |
| w                      | 1 160            | 1 160             | 001                       | w            | 25 641 | 25 643            | 223              |
| m                      | 2 312            | 2 309             | $20\overline{1}$          | w            | 26 054 | 26 051            | 315              |
| vw                     | 3 056            | 3 053             | 200                       | w            | 27 099 | 27 098            | 422              |
| vw                     | 3 885            | 3 884             | $20\overline{2}$          | 1            | 07.417 | (27 426           | 42               |
| w                      | 5 228            | 5 229             | 110                       | vw           | 27 417 | 27 473            | 600              |
| vw                     | 5 434            | 5 437             | 111                       | w            | 27 596 | 27 594            | 114              |
| vw                     | 6 132            | 6 116             | 201                       | w            | 27 905 | 27 911            | 60               |
| vst                    | 7 341            | 7 341             | 111                       | m            | 28 301 | 28 302            | 023              |
| m                      | 7 774            | 7 779             | $20\overline{3}$          | w            | 29 087 | 29 089            | 423              |
| st                     | 7 965            | 7 965             | $\overline{112}$          |              |        | (29 464           | 511              |
| w                      | 9 228            | 9 234             | $\mathbf{40\overline{2}}$ | w            | 29 464 | 29 465            | 118              |
| w                      | 9 567            | 9 562             | <b>40</b> 1               | m            | 30 075 | 30 074            | 420              |
| m                      | 9 631            | 9 638             | 311                       | vw           | 30 335 | 30 340            | 313              |
| m                      | 10 253           | 10 262            | $31\overline{2}$          | vw           | 31 112 | 31 118            | 400              |
| $\mathbf{m}$           | 10 436           | 10 438            | 003                       | vw           | 31 850 | 31 858            | 224              |
| $\mathbf{m}$           | 11 222           | 11 225            | $40\overline{3}$          | m            | 32 310 | 32 308            | 713              |
| st                     | 11 330           | 11 334            | 310                       |              | 99 975 | (33 383           | 20               |
| $\mathbf{m}$           | 11 771           | 11 772            | 112                       | w            | 33 375 | 133 400           | 424              |
| $\mathbf{m}$           | 12 204           | 12 210            | 400                       | vw           | 34 073 | 34 072            | 403              |
| $\mathbf{w}$           | 12 808           | 12 812            | $11\overline{3}$          | vw           | 35 035 | 35 042            | 421              |
| $\mathbf{m}$           | 13 201           | 13 205            | $31\overline{3}$          |              | 90 499 | 136 421           | 024              |
| w                      | 13 997           | 13 994            | $20\overline{4}$          | vw           | 36 432 | 36 433            | 803              |
| vw                     | 15 339           | 15 350            | 311                       | m            | 36 743 | 36 740            | $51\overline{6}$ |
| vw                     | 17 171           | 17 178            | 401                       | m            | 37 072 | 37 067            | 223              |
| m                      | 17 857           | 17 864            | 020                       | vw           | 37 722 | 37 703            | 512              |
| w                      | 18 446           | 18 468            | $31\overline{4}$          | vw           | 38 239 | 38 249            | 802              |
| w                      | 18 663           | 18 664            | $51\overline{2}$          | w            | 38 991 | 38 985            | 115              |
| w                      | 19 203           | 19 203            | 203                       | vw           | 39 771 | 39 759            | 805              |
| vw                     | 19 704           | 19 704            | $51\overline{3}$          | vw           | 40 019 | 40 031            | 425              |
|                        | 19 972           | 19 945            | $51\overline{1}$          | vw           | 40 408 | 40 393            | $22\overline{5}$ |
| vw                     |                  | 19 979            | 114                       | vw           | 40 807 | 40 785            | $62\overline{1}$ |
| $\mathbf{v}\mathbf{w}$ | 20 164           | 20 172            | $22\overline{1}$          | vw           | 41 051 | 41 048            | $62\overline{4}$ |
| vw                     | 20 681           | 20 689            | $60\overline{2}$          |              | 41 275 | J41 272           | $11\overline{6}$ |
| w                      | 21 676           | 21 685            | 312                       | w            | 41 275 | 41 315            | 314              |
| $\mathbf{v}\mathbf{w}$ | 22 167           | 22 167            | $\mathbf{40\overline{5}}$ | w            | 41 864 | 41 860            | 710              |
|                        | 00 524           | <b>(22 503</b>    | 022                       |              |        | (42 329           | 422              |
| vw                     | 22 534           | 22 529            | $22\overline{5}$          | vw           | 42 364 | 42 385            | 801              |
| $\mathbf{v}\mathbf{w}$ | 23 187           | 23 184            | $60\overline{4}$          |              |        | 42 388            | 407              |
| $\mathbf{v}\mathbf{w}$ | 23 548           | 23 544            | 510                       | w            | 43 076 | 43 069            | 131              |
| $\mathbf{v}\mathbf{w}$ | 24 002           | 23 978            | $51\overline{4}$          |              | 49 655 | J43 632           | $71\overline{6}$ |
| vw                     | 24 443           | 24 465            | 402                       | w            | 43 655 | 43 692            | $13\overline{2}$ |

Ta(As) — 4 Ta(As): 3.379 — 4 Ta(As): 3.435 — 2 As(Ta): 2.591 — 4 As(Ta): 2.615

| Phase                          | a (Å)             | b (Å)           | c (Å)                             | β (°)           |
|--------------------------------|-------------------|-----------------|-----------------------------------|-----------------|
| TaAs <sub>2</sub> <sup>a</sup> | 9.3385            | 3.3851          | 7.7568                            | 119.70          |
| ${f TaAs_2}^b$                 | $9.350 \pm 0.002$ | $3.388\pm0.002$ | $\textbf{7.760}\pm\textbf{0.002}$ | $119.75\pm0.08$ |
| $TaSb_2^a$                     | 10.2218           | 3.6447          | 8.2915                            | 120.39          |

Table 8. Lattice constants of TaAs, and TaSb.

Four phases are known with the NbAs-type structure, i.e. NbAs,<sup>3,5,6</sup> NbP,<sup>5,19</sup> TaP,<sup>5,19</sup> and TaAs.<sup>5,6</sup>

The TaAs<sub>2</sub> and TaSb<sub>2</sub> phases. The phases TaAs<sub>2</sub> and TaSb<sub>2</sub> were easily achieved by heating mixtures of the elements. Guinier photographs (Tables 6 and 7) of the stoichiometric TaAs<sub>2</sub> and TaSb<sub>2</sub> samples were indexed monoclinically. The unit cell dimensions will be seen from Table 8, where also the values previously determined for TaAs<sub>2</sub> by Saini et al.<sup>6</sup> are listed. Although the present values do not fall within the error limits given by them, the accordance is considered satisfactory.

On the basis of the observed densities  $10.26 \,\mathrm{g}$  cm<sup>-3</sup> (TaAs<sub>2</sub>) and  $10.53 \,\mathrm{g}$  cm<sup>-3</sup> (TaSb<sub>2</sub>) the unit cells contain 4 TaX<sub>2</sub>-groups ( $Z_{\rm c} = 3.97$  for TaAs<sub>2</sub> and  $Z_{\rm c} = 3.98$  for TaSb<sub>2</sub>). The calculated densities from the X-ray data are  $10.33 \,\mathrm{g}$  cm<sup>-3</sup> (TaAs<sub>2</sub>) and  $10.58 \,\mathrm{g}$  cm<sup>-3</sup> (TaSb<sub>2</sub>).

Guinier photographs of TaAs<sub>2</sub> and TaSb<sub>2</sub> in samples where these phases are in equilibrium with phases of higher and lower metal content, give no significant variation of the lattice constants. The ranges of homogeneity are thus rather narrow.

The systematic extinctions are of the type

hkl absent when h + k = 2n + 1

Characteristic space groups are accordingly C2, Cm, and C2/m.

Obvious relationships in lattice dimensions and possible space groups indicated that the structure of both phases might be of the NbAs<sub>2</sub>-type.<sup>1,4</sup> To confirm this suggestion, a set of calculated structure factors (based on the parameter values (rounded off) from NbAs<sub>2</sub> and NbSb<sub>2</sub>) were compared with those observed. All possible reflections in the Guinier photographs were included in the calculation. The obtained agreements were surprisingly good and the proposed NbAs<sub>2</sub>-type structure must be considered proved.

In terms of space group C2 all atoms are in

(c) 
$$x,y,z; \bar{x},\bar{y},\bar{z}; \frac{1}{2}+x,\frac{1}{2}+y,\frac{1}{2}+z; \frac{1}{2}-x,\frac{1}{2}+y,\frac{1}{2}-z$$
 with:

TaAs<sub>2</sub>: 
$$x_{\text{Ta}} = 0.34$$
,  $y_{\text{Ta}} = \frac{1}{2}$ ,  $z_{\text{Ta}} = 0.30$   
 $x_{\text{As}_{\text{I}}} = 0.09$ ,  $y_{\text{As}_{\text{I}}} = 0.49$ ,  $z_{\text{As}_{\text{I}}} = 0.39$   
 $x_{\text{As}_{\text{II}}} = 0.14$ ,  $y_{\text{As}_{\text{II}}} = 0.07$ ,  $z_{\text{As}_{\text{II}}} = 0.03$ 

<sup>&</sup>lt;sup>a</sup> This study. <sup>b</sup> Quoted from Saini et al.<sup>6</sup>

The parameter values are considered to be quite good.

The interatomic distances are listed in Table 9. For a detailed description of the NbAs<sub>2</sub>-type structure reference is made to Furuseth and Kjekshus.<sup>4</sup> Six phases are known at present with the NbAs<sub>2</sub>-type structure, *i.e.* NbAs<sub>2</sub>,<sup>1,4</sup> NbSb<sub>2</sub>,<sup>1,4</sup> TaAs<sub>2</sub>, TaSb<sub>2</sub>, MoAs<sub>2</sub>,<sup>20</sup> and WAs<sub>2</sub>.<sup>21</sup>

Table 9. Interatomic distances in TaAs, and TaSb, (Å).

Magnetic properties. The magnetic susceptibilities of Ta<sub>5</sub>Sb<sub>4</sub>, TaAs, TaAs<sub>2</sub>, and TaSb<sub>2</sub> were measured at temperatures between 90 and 725°K. (The Ta<sub>3</sub>Sb

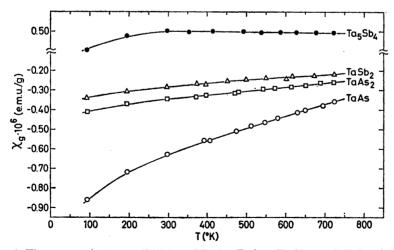



Fig. 1. The magnetic susceptibilities of TaAs, TaAs, Ta<sub>5</sub>Sb<sub>4</sub>, and TaSb<sub>3</sub> as a function of temperature.

Acta Chem. Scand. 19 (1965) No. 1

phase was considered too impure to be included among the results of magnetic susceptibility measurements in this communication.) The results, cf. Fig. 1, show either diamagnetic or weak almost temperature independent susceptibilities.

The expected diamagnetism resulting from the atomic cores in the three diamagnetic substances TaAs, TaAs<sub>2</sub>, and TaSb<sub>2</sub> is of the same size as observed. The core contributions are  $-0.31 \times 10^{-6}$ ,  $-0.43 \times 10^{-6}$ , and  $-0.48 \times 10^{-6}$  e.m.u. per gram TaAs, TaAs<sub>2</sub>, and TaSb<sub>2</sub>, respectively. (These values were calculated from the diamagnetic corrections  $-14 \times 10^{-6}$  e.m.u. per mole Ta<sup>5+</sup> according to Klemm <sup>22</sup> and  $-64.6 \times 10^{-6}$  e.m.u. per mole As<sup>3-</sup> and  $-94.4 \times 10^{-6}$  e.m.u. per mole Sb<sup>3-</sup> according to Angus.<sup>23</sup>) By subtracting these values from the susceptibilities measured the total susceptibilities of localized, non-bonding electrons, valence electrons and conduction electrons are obtained. The measurements show that no unpaired d-electrons are present on the tantalum atoms, and suggest a covalent type of bonding in TaAs, TaAs<sub>2</sub>, and TaSb<sub>2</sub>.

The core contribution is  $-0.32 \times 10^{-6}$  e.m.u. per gram  $Ta_5Sb_4$ .  $Ta_5Sb_4$  is expected to have a metallic type of bonding and the observed paramagnetism should consequently be associated with the paramagnetism of the spin of the conduction electrons.

When it is added that magnetic measurements carried out on the impure Ta<sub>3</sub>Sb sample indicate weak temperature independent paramagnetism, the almost complete identity in magnetic properties between corresponding niobium and tantalum arsenide and antimonide phases becomes evident.

## DISCUSSION

A discussion of the bonding in the metallic like phases  ${\rm Ta_3Sb}$  and  ${\rm Ta_5Sb_4}$  must await further experimental data.

The bonding in TaAs,  $TaAs_2$ , and  $TaSb_2$  is conveniently discussed in terms of the general (8-N) rule:<sup>24-27</sup>

$$(n_e + b_a - b_c)/n_a = 8$$

where per formula unit  $n_e$  is the number of valence electrons,  $n_a$  the number of anions,  $b_a$  the number of valence electrons involved in anion-anion bond formation, and  $b_c$  is the number of valence electrons involved in cation-cation bond formation (together with any unshared electrons on the cations). (This rule is a mathematical formulation of the need for all the anions in a crystal to possess a complete octet. <sup>27</sup>)

In the crystal structure of TaAs (similar for the isostructural phases NbAs, NbP, and TaP) there are no short As—As or Ta—Ta distances which can be associated with anion-anion or cation-cation bonds. According to its structure TaAs is therefore a normal valence compound. Furthermore, TaAs is diamagnetic (the same is found for NbAs<sup>2</sup>) and each tantalum atom must consequently contribute 5, 3, or 1 electron to  $n_e$ . Each arsenic atom provides 5 electrons. In order to comply with the rule three of the outer electrons from the tantalum atoms must therefore participate in the chemical bonding leaving an inert electron pair on each tantalum atom. Data for the electrical

Table 10. Application of the general (8-N) rule on some  $MX_2$ -phases.

|   | Reference             | Pearson <sup>28</sup> Trzebiatowski <i>et al.</i> <sup>29</sup> Jeitschko and Nowotny <sup>80</sup> Pearson <sup>28</sup> | Pearson 26<br>Furuseth and Kjekshus 4                                                             | Pearson <sup>28</sup> Rundqvist and Lundström <sup>31</sup> Jensen and Kjekshus <sup>20</sup> Skansen and Kjekshus <sup>31</sup> Pearson <sup>28</sup> |
|---|-----------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Anion<br>substructure | X-X pairs $X-X$ pairs between $I-I$                                                                                       | $X-X$ pairs $X-X$ pairs between $\Pi-\Pi$                                                         | X-X pairs $X-X$ pairs $X-X$ pairs between $I-II$ $X-X$ pairs between $II-II$                                                                           |
|   | $b_c/n_a$             | -tos r=:                                                                                                                  | -+tox                                                                                             |                                                                                                                                                        |
|   | ba/na                 |                                                                                                                           |                                                                                                   |                                                                                                                                                        |
|   | $n_e/n_a$             |                                                                                                                           | -tos-tos                                                                                          | <b>∞</b> ∞ ∞                                                                                                                                           |
| • | Structure<br>type     | $CuAl_2$ $PbCl_2$ $Cu_2Sb$                                                                                                | CuAl <sub>2</sub><br>NbAs <sub>2</sub>                                                            | Marcasite<br>MoP <sub>2</sub><br>NbAs <sub>2</sub><br>Cu <sub>2</sub> Sb                                                                               |
|   | Phase                 | TiSb <sub>2</sub><br>ZrAs <sub>2</sub> , HfAs <sub>2</sub><br>ThAs <sub>2</sub> , ThSb <sub>2</sub>                       | VSb <sub>2</sub><br>NbAs <sub>2</sub> , NbSb <sub>2</sub> , TaAs <sub>2</sub> , TaSb <sub>2</sub> | CrSb <sub>2</sub> MoP <sub>2</sub> , WP <sub>2</sub> MoAs <sub>2</sub> , WAs <sub>2</sub> UP <sub>3</sub> , UAs <sub>3</sub> , USi <sub>2</sub>        |

conductivities or optical properties of these substances are needed before this suggestion can be fully accepted.

The general (8-N) rule has previously been applied to pnigogen phases with composition  $MX_2$ , M being a transition metal from subgroup IV, V, or VI.4 Table 10 (which is quoted from Furuseth and Kjekshus 4 with some additions) shows the partition of  $n_e/n_a$  (based on valences corresponding to the group numbers)  $b_a/n_a$  (according to the crystal structures) and  $b_c/n_a$  (assuming the general (8-N) rule satisfied) for the considered compounds.

The new phases included in Table 10 are TaAs<sub>2</sub>, TaSb<sub>2</sub>, MoAs<sub>2</sub>, and WAs<sub>2</sub>, with the NbAs<sub>2</sub>-type structure. The rule appears to be fulfilled as far as TaAs<sub>2</sub> and TaSb<sub>2</sub> are concerned, whose  $b_c/n_a = 0$  is consistent with the diamagnetism observed. For MoAs<sub>2</sub> and WAs<sub>2</sub>, however, the calculated  $b_c/n_a = \frac{1}{2}$  suggests that one electron should be localized on each metal atom. This is in disagreement with the observed diamagnetism for MoAs<sub>2</sub><sup>20</sup> and WAs<sub>2</sub>.<sup>21</sup> We are awaiting the gathering of more data on these substances before any conclusions can be drawn.

Acknowledgement. The authors wish to thank Professor Haakon Haraldsen for his kind interest in this study and for placing laboratory facilities at their disposal.

#### REFERENCES

- 1. Furuseth, S. and Kjekshus, A. Nature 203 (1964) 512.
- 2. Furuseth, S. and Kjekshus, A. Acta Chem. Scand. 18 (1964) 1180.
  3. Furuseth, S. and Kjekshus, A. Acta Cryst. 17 (1964) 1077.
  4. Furuseth, S. and Kjekshus, A. Acta Cryst. 18 (1965). In press.
  5. Boller, H. and Parthé, E. Acta Cryst. 16 (1963) 1095.

- Solier, H. and Farthe, E. Acta Cryst. 10 (1963) 1095.
   Saini, G. S., Calvert, L. D. and Taylor, J. B. Can. J. Chem. 42 (1964) 630.
   Heinerth, E. and Biltz, W. Z. anorg. allgem. Chem. 198 (1931) 175.
   Nevitt, M. V. Trans. Met. Soc. AIME 212 (1958) 350.
   Hambling, P. G. Acta Cryst. 6 (1953) 98.
   Bjerkelund, E. and Kjekshus, A. To be published.
   Swanson, H. E. and Tatge, E. Nat. Bur. Std. (U.S.) Circ. 539 I (1953), p. 29.
   Coller, S. Acta Cryst. 9 (1956) 885, 10 (1957) 380.
- 12. Geller, S. Acta Cryst. 9 (1956) 885; 10 (1957) 380.
- 13. Pauling, L. Acta Cryst. 10 (1957) 374.
   14. Grønvold, F., Kjekshus, A. and Raaum, F. Acta Cryst. 14 (1961) 930.
   15. Grønvold, F., Haraldsen, H., Pedersen, B. and Tufte, T. To be published.
- 16. Røst, E. and Gjertsen, L. Z. anorg. allgem. Chem. 328 (1964) 299.
- 17. Selte, K. and Kjekshus, A. Acta Chem. Scand. 17 (1963) 2560.
- 18. Grenvold, F., Hagberg, O. and Haraldsen, H. Acta Chem. Scand. 12 (1958) 971.
  19. Rundqvist, S. Arkiv Kemi 20 (1962) 67.
  20. Jensen, P. and Kjekshus, A. Acta Chem. Scand. 18 (1964) 1798.
  21. Skansen, T. and Kjekshus, A. To be published.

- 22. Klemm, W. Z. anorg. allgem. Chem. 246 (1941) 347.
- Angus, W. R. Proc. Roy. Soc. (London) A 136 (1932) 573.
   Mooser, E. and Pearson, W. B. Progr. Semiconductors 5 (1960) 103.
   Hulliger, F. and Mooser, E. J. Phys. Chem. Solids 24 (1963) 238.
   Pearson, W. B. Acta Cryst. 17 (1964) 1.

- 27. Kjekshus, A. Acta Chem. Scand. 18 (1964) 2379.
- Pearson, W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, London—New York—Paris—Los Angeles 1958.
   Trzebiatowski, W., Weglowski, S. and Lukazewics, K. Roczniki Chem. 32 (1958) 189.
   Jeitschko, W. and Nowotny, H. Monatsh. 93 (1962) 1284.
   Rundqvist, S. and Lundström, T. Acta Chem. Scand. 17 (1963) 37.

Received October 2, 1964.